Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction

نویسندگان

  • Eleonora De Leonardis
  • Benjamin Lutz
  • Sebastian Ratz
  • Simona Cocco
  • Rémi Monasson
  • Alexander Schug
  • Martin Weigt
چکیده

Despite the biological importance of non-coding RNA, their structural characterization remains challenging. Making use of the rapidly growing sequence databases, we analyze nucleotide coevolution across homologous sequences via Direct-Coupling Analysis to detect nucleotide-nucleotide contacts. For a representative set of riboswitches, we show that the results of Direct-Coupling Analysis in combination with a generalized Nussinov algorithm systematically improve the results of RNA secondary structure prediction beyond traditional covariance approaches based on mutual information. Even more importantly, we show that the results of Direct-Coupling Analysis are enriched in tertiary structure contacts. By integrating these predictions into molecular modeling tools, systematically improved tertiary structure predictions can be obtained, as compared to using secondary structure information alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide–nucleotide interactions from direct coupling analysis

Direct coupling analysis of nucleotide coevolution provides a novel approach to identify which nucleotides in an RNA molecule are likely in direct contact, and this information obtained from sequence only can be used to predict RNA 3D structures with much improved accuracy. Here we present an efficient method that incorporates this information into current RNA 3D structure prediction methods, s...

متن کامل

Detecting the coevolution of biosequences--an example of RNA interaction prediction.

A probabilistic graphical model is proposed in order to detect the coevolution between different sites in biological sequences. The model extends the continuous-time Markov process of sequence substitution for single nucleic or amino acids and imposes general constraints regarding simultaneous changes on the substitution rate matrix. Given a multiple sequence alignment for each molecule of inte...

متن کامل

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

Direct Information Reweighted by Contact Templates: Improved RNA Contact Prediction by Combining Structural Features

It is acknowledged that co-evolutionary nucleotide-nucleotide interactions are essential for RNA structures and functions. Currently, direct coupling analysis (DCA) infers nucleotide contacts in a sequence from its homologous sequence alignment across different species. DCA and similar approaches that use sequence information alone usually yield a low accuracy, especially when the available hom...

متن کامل

On the significance of an RNA tertiary structure prediction.

Tertiary structure prediction is important for understanding structure-function relationships for RNAs whose structures are unknown and for characterizing RNA states recalcitrant to direct analysis. However, it is unknown what root-mean-square deviation (RMSD) corresponds to a statistically significant RNA tertiary structure prediction. We use discrete molecular dynamics to generate RNA-like fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015